Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 238(Pt 2): 123050, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34801907

RESUMO

Tromethamine (TMM), often encountered in a final drug product, exhibits interesting chemical properties as a counter ion, buffer, or active ingredient. European and US pharmacopeias propose titration against hydrogen chloride for TMM assays. However, this method can be a hindrance when using drugs containing low concentrations of TMM in complex buffered formulations. Due to the lack of chromophores and the high hydrophilicity of TMM, we performed a simple and reliable hydrophilic interaction chromatography coupled with a charged aerosol detector (HILIC-CAD) separation approach as an alternative for TMM analysis. An amide stationary phase and a mobile phase consisting of a binary mixture of acetonitrile and 10 mM ammonium formate, pH 3 (80/20, V/V) were used. As the CAD response deeply depends on parameters such as stationary phases and pH buffer, we investigated their impact and explored the optimal signal conditions. Including TMM analogs such as tris(hydroxymethyl) nitromethane and 2-amino-2-ethyl-1,3-propanediol allowed us to select these parameters appropriately. The effects of the evaporation temperature, flow rate, and power function value (PFV) on the CAD signal response were also studied and optimized. The method was validated according to the ICH Q2 R1 guidelines. A linear response (mean R2 > 0.997) covering the range for low TMM concentrations (170-520 µg/mL) was achieved. Satisfactory intra-day and inter-day precisions were obtained with RSDs lower than 1.9% and 2.8%, respectively. The trueness ranged from 99.6% to 101.2%, and the LOD was found to be 1.1 µg/mL. The HILIC-CAD method has been applied to a sterile TMM solution for injection.


Assuntos
Trometamina , Aerossóis , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida , Interações Hidrofóbicas e Hidrofílicas
2.
Sci Total Environ ; 766: 142513, 2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33121783

RESUMO

Rare earth elements (REEs) are metallic elements with electronic, magnetic, optical and catalytic properties which make them essential in many industrial and medical fields. REEs are therefore becoming emerging pollutants and it is important to understand their implications for ecosystem health. However, little knowledge of REE bioaccumulation in aquatic organisms is available and especially on their internal distribution in fish. In the present study, REE organotropism was determined in Anguilla anguilla from the Loire estuary (France) by determining burdens in a wide set of tissues, organs and biological fluids. Differences have been observed between life stages and genders. For yellow eels, the most accumulating organ was the gills (126.90 ± 50.78 µg/kg dw) and for silver eels, it was the liver (181.78 ± 62.04 µg/kg dw for males; 203.79 ± 111.86 µg/kg dw for females). The comparison between female silver and yellow eels shown that female silver individuals accumulated significantly more REEs in the urinary system (US), muscles, gonads, spleen and liver, while yellow individuals accumulated more in gills. The comparison between male and female silver eels also highlighted differences, indeed the females accumulated significantly more REEs in the US, gonads, skin and spleen, compared to males which accumulated significantly more in muscles and gills. REEs abundances are also different between organs, life stages and genders. The gonads of female silver eels exhibited a particular profile with the dominance of gadolinium (Gd) (up to 74.2% of ∑REEs). Moreover, the presence of Anguillicola crassus in the swim bladder of organisms seemed to have an impact on REE bioaccumulation: parasitized yellow eels present higher concentrations of REEs in muscles, gills, gonads and liver than non-parasitized individuals. Regarding glass eels, REE contribution profiles in the whole body were close to those of yellow and silver eel skin.


Assuntos
Anguilla , Animais , Bioacumulação , Ecossistema , Estuários , Feminino , França , Masculino
3.
Rapid Commun Mass Spectrom ; 34(19): e8859, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32530533

RESUMO

RATIONALE: The dinoflagellate genera Gambierdiscus and Fukuyoa are producers of toxins responsible for Ciguatera Poisoning (CP). Although having very low oral potency, maitotoxins (MTXs) are very toxic following intraperitoneal injection and feeding studies have shown they may accumulate in fish muscle. To date, six MTX congeners have been described but two congeners (MTX2 and MTX4) have not yet been structurally elucidated. The aim of the present study was to further characterize MTX4. METHODS: Chemical analysis was performed using liquid chromatography coupled to a diode-array detector (DAD) and positive ion mode high-resolution mass spectrometry (LC/HRMS) on partially purified extracts of G. excentricus (strain VGO792). HRMS/MS studies were also carried out to tentatively explain the fragmentation pathways of MTX and MTX4. RESULTS: The comparison of UV and HRMS (ESI+ ) spectra between MTX and MTX4 led us to propose the elemental formula of MTX4 (C157 H241 NO68 S2 , as the unsalted molecule). The comparison of the theoretical and measured m/z values of the doubly charged ions of the isotopic profile in ESI+ were coherent with the proposed elemental formula of MTX4. The study of HRMS/MS spectra on the tri-ammoniated adduct ([M - H + 3NH4 ]2+ ) of both molecules gave additional information about structural features. The cleavage observed, probably located at C99 -C100 in both MTX and MTX4, highlighted the same A-side product ion shared by the two molecules. CONCLUSIONS: All these investigations on the characterization of MTX4 contribute to highlighting that MTX4 belongs to the same structural family of MTXs. However, to accomplish a complete structural elucidation of MTX4, an NMR-based study and LC/HRMSn investigation will have to be carried out.


Assuntos
Dinoflagellida/química , Toxinas Marinhas , Oxocinas , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida/métodos , Espectroscopia de Ressonância Magnética , Toxinas Marinhas/análise , Toxinas Marinhas/química , Oxocinas/análise , Oxocinas/química
4.
Sci Total Environ ; 719: 134938, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-31859057

RESUMO

In the present work, rare earth elements (REEs) were measured in European eel muscles (Anguilla anguilla) from the Loire estuary in France. This study site is characterized by a large anthropogenic pressure with potential activities releasing REEs such as oil refineries, aeronautic and naval industries, wind turbine industries, hospitals with magnetic resonance imaging and coal-fired power plants. These activities may lead to increased REE concentrations in sediments the primary habitat of European eels. In the present work, REE bioaccumulation was evaluated by determining the concentrations in yellow and silver eel muscles sampled at three different locations in the Loire estuary and at two periods (2011/2012 and 2018/2019). The aims of this study were the understanding of the spatio-temporal influences (sampling site and sampling period) and intraspecific variations (age, sex, sexual maturation, length, weight, and parasitism) on the whole REE bioaccumulation. The mean value of the sum of REE concentrations (∑REEs) was 2.91, 6.48 and 12.60 µg/kg of muscle from respectively yellow eels, female silver eels and male silver eels fished in 2018/2019. The results showed that silver males accumulated more REEs than silver females and silver eels accumulate more REEs than yellow ones. Regarding the determination of spatio-temporal variations, an increase of REE concentrations for silver eel muscles between the two periods was observed, certainly related to the increase of REE uses. Finally, a trend of higher contamination of eels sampled in the downstream of Nantes was noticed for yellow eels.


Assuntos
Anguilla , Animais , Bioacumulação , Estuários , Feminino , França , Masculino , Maturidade Sexual
5.
J Chromatogr A ; 1571: 16-28, 2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30100527

RESUMO

Ciguatera Fish Poisoning (CFP) is primarily caused by consumption of tropical and sub-tropical fish contaminated by Ciguatoxins (CTXs). These lipid-soluble, polyether neurotoxins are produced by dinoflagellates in the genera Gambierdiscus and Fukuyoa. While there is no regulatory level in Europe for CTXs, the European Food Safety Authority (EFSA) adopted the United States guidance level of 0.01 µg P-CTX1B eq.kg-1 of fish. This limit is extremely low and requires significant improvement in the detection of CTXs. In this study, we compared analytical protocols based on liquid chromatography coupled to tandem low or high resolution mass spectrometry (LC-LRMS or HRMS) to find the best conditions for sensitivity and/or selectivity. Different approaches such as LC conditions, ion choice and acquisition modes, were evaluated to detect the Pacific-ciguatoxins (P-CTXs) on a triple quadrupole (API4000 Qtrap, Sciex) or a quadrupole time of flight (QTOF 6550, Agilent Technologies) spectrometer. Moreover, matrix effects were calculated using matrix-matched calibration solutions of P-CTX1B and P-CTX3C prepared in purified fish extract. Subsequently, the method performance was assessed on naturally contaminated samples of seafood and phytoplankton. With LRMS, the ammoniated adduct ion used as a precursor ion showed an advantage for selectivity through confirmatory transitions, without affecting signal-to-noise ratios, and hence limits of detection (LODs). As also reported by some studies in the literature, methanol-based mobile phase gave better selectivity and sensitivity for the detection of P-CTXs. While the LOD for P-CTX1B and P-CTX3C met the EFSA recommendation level when using LRMS, the findings suggested careful evaluation of instrumental parameters for determination of CTXs. LODs were significantly higher for HRMS, which currently results in the need for a significantly higher sample intake. Nevertheless, HRMS allowed for the identification of artefacts and may allow for improved confirmation of the identity of P-CTXs analogues. Consequently, LRMS and HRMS are considered complementary to ensure adequate quantitation and identification of P-CTXs.


Assuntos
Cromatografia Líquida , Ciguatera/diagnóstico , Análise de Alimentos/métodos , Espectrometria de Massas em Tandem , Animais , Ciguatoxinas , Dinoflagellida/química , Europa (Continente) , Peixes , Limite de Detecção , Alimentos Marinhos/análise
6.
Mar Drugs ; 15(7)2017 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-28696398

RESUMO

Maitotoxins (MTXs) are among the most potent toxins known. These toxins are produced by epi-benthic dinoflagellates of the genera Gambierdiscus and Fukuyoa and may play a role in causing the symptoms associated with Ciguatera Fish Poisoning. A recent survey revealed that, of the species tested, the newly described species from the Canary Islands, G. excentricus, is one of the most maitotoxic. The goal of the present study was to characterize MTX-related compounds produced by this species. Initially, lysates of cells from two Canary Island G. excentricus strains VGO791 and VGO792 were partially purified by (i) liquid-liquid partitioning between dichloromethane and aqueous methanol followed by (ii) size-exclusion chromatography. Fractions from chromatographic separation were screened for MTX toxicity using both the neuroblastoma neuro-2a (N2a) cytotoxicity and Ca2+ flux functional assays. Fractions containing MTX activity were analyzed using liquid chromatography coupled to high-resolution mass spectrometry (LC-HRMS) to pinpoint potential MTX analogs. Subsequent non-targeted HRMS analysis permitted the identification of a novel MTX analog, maitotoxin-4 (MTX4, accurate mono-isotopic mass of 3292.4860 Da, as free acid form) in the most toxic fractions. HRMS/MS spectra of MTX4 as well as of MTX are presented. In addition, crude methanolic extracts of five other strains of G. excentricus and 37 other strains representing one Fukuyoa species and ten species, one ribotype and one undetermined strain/species of Gambierdiscus were screened for the presence of MTXs using low resolution tandem mass spectrometry (LRMS/MS). This targeted analysis indicated the original maitotoxin (MTX) was only present in one strain (G. australes S080911_1). Putative maitotoxin-2 (p-MTX2) and maitotoxin-3 (p-MTX3) were identified in several other species, but confirmation was not possible because of the lack of reference material. Maitotoxin-4 was detected in all seven strains of G. excentricus examined, independently of their origin (Brazil, Canary Islands and Caribbean), and not detected in any other species. MTX4 may therefore serve as a biomarker for the highly toxic G. excentricus in the Atlantic area.


Assuntos
Dinoflagellida/química , Toxinas Marinhas/química , Toxinas Marinhas/toxicidade , Oxocinas/química , Oxocinas/toxicidade , Animais , Bioensaio/métodos , Brasil , Região do Caribe , Linhagem Celular Tumoral , Ciguatera/genética , Ciguatera/parasitologia , Ciguatoxinas/toxicidade , Camundongos , Filogenia , Espanha , Especificidade da Espécie
7.
Rapid Commun Mass Spectrom ; 31(17): 1453-1461, 2017 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-28582796

RESUMO

RATIONALE: Accurate quantitative analysis of lipophilic toxins by liquid chromatography/mass spectrometry (LC/MS) requires calibration solution reference materials (RMs) for individual toxin analogs. Untargeted analysis is aimed at identifying a vast number of compounds and thus validation of fully quantitative untargeted methods is not feasible. However, a semi-quantitative approach allowing for profiling is still required and will be strengthened by knowledge of the relative molar response (RMR) of analogs in LC/MS with electrospray ionization (ESI). METHODS: RMR factors were evaluated for toxins from the okadaic acid (OA/DTXs), yessotoxin (YTX), pectenotoxin (PTX), azaspiracid (AZA) and cyclic imine (CI) toxin groups, in both solvent standards and environmental sample extracts. Since compound ionization and fragmentation influences the MS response of toxins, RMRs were assessed under different chromatographic conditions (gradient, isocratic) and MS acquisition modes (SIM, SRM, All-ion, target MS/MS) on low- and high-resolution mass spectrometers. RESULTS: In general, RMRs were not significantly impacted by chromatographic conditions (isocratic vs gradient), with the exception of DTX1. MS acquisition modes had a more significant impact, with PnTX-G and SPX differing notably. For a given toxin group, response factors were generally in the range of 0.5 to 2. The cyclic imines were an exception. CONCLUSIONS: Differences in RMRs between toxins of a same chemical base structure were not significant enough to indicate major issues for non-targeted semi-quantitative analysis, where there is limited or no availability of standards for many compounds, and where high degrees of accuracy are not required. Differences in RMRs should be considered when developing methods that use a standard of a single analogue to quantitate other toxins from the same group.


Assuntos
Cromatografia Líquida/métodos , Toxinas Marinhas/análise , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia Líquida/normas , Proliferação Nociva de Algas , Toxinas Marinhas/química , Venenos de Moluscos , Ácido Okadáico/análise , Oxocinas/análise , Oxocinas/química , Padrões de Referência , Espectrometria de Massas por Ionização por Electrospray/normas , Compostos de Espiro/análise , Compostos de Espiro/química
8.
Harmful Algae ; 63: 173-183, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28366392

RESUMO

Species in the epi-benthic dinoflagellate genus Gambierdiscus produce ciguatoxins (CTXs) and maitotoxins (MTXs), which are among the most potent marine toxins known. Consumption of fish contaminated with sufficient quantities of CTXs causes Ciguatera Fish Poisoning (CFP), the largest cause of non-bacterial food poisoning worldwide. Maitotoxins, which can be found in the digestive system of fish, could also contribute to CFP if such tissues are consumed. Recently, an increasing number of Gambierdiscus species have been identified; yet, little is known about the variation in toxicity among Gambierdiscus strains or species. This study is the first assessment of relative CTX- and MTX-toxicity of Gambierdiscus species from areas as widespread as the North-Eastern Atlantic Ocean, Pacific Ocean and the Mediterranean Sea. A total of 13 strains were screened: (i) seven Pacific strains of G. australes, G. balechii, G. caribaeus, G. carpenteri, G. pacificus, G. scabrosus and one strain of an undetermined species (Gambierdiscus sp. Viet Nam), (ii) five strains from the North-Eastern Atlantic Ocean (two G. australes, a single G. excentricus and two G. silvae strains), and (iii) one G. carolinianus strain from the Mediterranean Sea. Cell pellets of Gambierdiscus were extracted with methanol and the crude extracts partitioned into a CTX-containing dichloromethane fraction and a MTX-containing aqueous methanol fraction. CTX-toxicity was estimated using the neuro-2a cytoxicity assay, and MTX-toxicity via a human erythrocyte lysis assay. Different species were grouped into different ratios of CTX- and MTX-toxicity, however, the ratio was not related to the geographical origin of species (Atlantic, Mediterranean, Pacific). All strains showed MTX-toxicity, ranging from 1.5 to 86pg MTX equivalents (eq) cell-1. All but one of the strains showed relatively low CTX-toxicity ranging from 0.6 to 50 fg CTX3C eq cell-1. The exception was the highly toxic G. excentricus strain from the Canary Islands, which produced 1426 fg CTX3C eq cell-1. As was true for CTX, the highest MTX-toxicity was also found in G. excentricus. Thus, the present study confirmed that at least one species from the Atlantic Ocean demonstrates similar toxicity as the most toxic strains from the Pacific, even if the metabolites in fish have so far been shown to be more toxic in the Pacific Ocean.


Assuntos
Bioensaio/métodos , Dinoflagellida/metabolismo , Toxinas Marinhas/análise , Animais , Ciguatera , Ciguatoxinas/análise , Ciguatoxinas/toxicidade , Eritrócitos/efeitos dos fármacos , Toxinas Marinhas/toxicidade , Oxocinas/análise , Oxocinas/toxicidade , Filogenia
9.
J Chromatogr A ; 1498: 155-162, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28173925

RESUMO

Retention behaviour of Dalargin and five peptide analogues of Leu-enkephalin, has been extensively studied by hydrophilic interaction liquid chromatography (HILIC) on a bare silica stationary phase (Atlantis® HILIC silica). The influence of buffer pH, ionic strength, and organic modifier content on peptide retentions was examined. Variation of organic modifier content (70-90% ACN) shows that, as expected, the most polar peptide, Dalargin, is the most retained. Moreover, at acidic pH, the retention mechanism for all the peptides studied seems to rely, mainly, on adsorption phenomenon. By varying the pswH buffer (between 4.4-7.5), we observed that the retention of all the peptides was mainly governed by their total number of charges, whatever the variation (increase or decrease) of their retention factor. At pswH 7.5, an increase of the cationic counter-ion concentration (NH4+) lead to a decrease of the retention factor of Dalargin, suggesting a weak cation exchange for this peptide. For the other peptides, the variation of the retention factors was negligible between 5-15mM. Above 15mM, the retention factors of all the peptides increased, probably due to an increase of the water layer thickness at the surface of the stationary phase. In the second part of the study, qualitative analysis of non-purified dalargin, resulting from solid-phase synthesis, was realized. Optimisation of the separation of the target peptide from its side products has been first performed with UV detection. Then, by coupling the HILIC column with ESI-MS, using the optimal separation conditions, it was possible to identify Dalargin and to propose the amino-acids sequence of its side-products.


Assuntos
Cromatografia Líquida de Alta Pressão , Leucina Encefalina-2-Alanina/análogos & derivados , Encefalina Leucina/análise , Compostos de Amônio/química , Encefalina Leucina/química , Encefalina Leucina/isolamento & purificação , Leucina Encefalina-2-Alanina/análise , Leucina Encefalina-2-Alanina/química , Leucina Encefalina-2-Alanina/isolamento & purificação , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Íons/química , Concentração Osmolar , Peptídeos/análise , Peptídeos/isolamento & purificação , Dióxido de Silício/química , Espectrometria de Massas por Ionização por Electrospray
10.
Environ Sci Technol ; 50(16): 8522-9, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27463836

RESUMO

Passive samplers (solid phase adsorption toxin tracking: SPATT) are able to accumulate biotoxins produced by microalgae directly from seawater, thus providing useful information for monitoring of the marine environment. SPATTs containing 0.3, 3, and 10 g of resin were deployed at four different coastal areas in France and analyzed using liquid chromatography coupled to high resolution mass spectrometry. Quantitative targeted screening provided insights into toxin profiles and showed that toxin concentrations and profiles in SPATTs were dependent on the amount of resin used. Between the three amounts of resin tested, SPATTs containing 3 g of resin appeared to be the best compromise, which is consistent with the use of 3 g of resin in SPATTs by previous studies. MassHunter and Mass Profiler Professional softwares were used for data reprocessing and statistical analyses. A differential profiling approach was developed to investigate and compare the overall chemical diversity of dissolved substances in different coastal water bodies. Principal component analysis (PCA) allowed for spatial differentiation between areas. Similarly, SPATTs retrieved from the same location at early, medium, and late deployment periods were also differentiated by PCA, reflecting seasonal variations in chemical profiles and in the microalgal community. This study used an untargeted metabolomic approach for spatial and temporal differentiation of marine environmental chemical profiles using SPATTs, and we propose this approach as a step forward in the discovery of chemical markers of short- or long-term changes in the microbial community structure.


Assuntos
Monitoramento Ambiental , Toxinas Marinhas/química , Água do Mar/química , Adsorção , Cromatografia Líquida , França , Espectrometria de Massas
11.
Toxicon ; 114: 16-27, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26896635

RESUMO

Algal toxins may accumulate in fish and shellfish and thus cause poisoning in consumers of seafood. Such toxins and the algae producing them are regularly surveyed in many countries, including Europe, North America, Japan and others. However, very little is known regards the occurrence of such algae and their toxins in most African countries. This paper reports on a survey of phytoplankton and algal toxins in Nigerian coastal waters. Seawater samples were obtained from four sites for phytoplankton identification, on three occasions between the middle of October 2014 and the end of February 2015 (Bar Beach and Lekki in Lagos State, Port Harcourt in Rivers State and Uyo in Akwa Ibom State). The phytoplankton community was generally dominated by diatoms and cyanobacteria; however several species of dinoflagellates were also identified: Dinophysis caudata, Lingulodinium polyedrum and two benthic species of Prorocentrum. Passive samplers (containing Diaion(®) HP-20 resin) were deployed for several 1-week periods on the same four sites to obtain profiles of algal toxins present in the seawater. Quantifiable amounts of okadaic acid (OA) and pectenotoxin 2 (PTX2), as well as traces of dinophysistoxin 1 (DTX1) were detected at several sites. Highest concentrations (60 ng OA g(-1) HP-20 resin) were found at Lekki and Bar Beach stations, which also had the highest salinities. Non-targeted analysis using full-scan high resolution mass spectrometry showed that algal metabolites differed from site to site and for different sampling occasions. Screening against a marine natural products database indicated the potential presence of cyanobacterial compounds in the water column, which was also consistent with phytoplankton analysis. During this study, the occurrence of the marine dinoflagellate toxins OA and PTX2 has been demonstrated in coastal waters of Nigeria, despite unfavourable environmental conditions, with regards to the low salinities measured. Hence shellfish samples should be monitored in future to assess the risk for public health through accumulation of such toxins in seafood.


Assuntos
Dinoflagellida/metabolismo , Toxinas Marinhas/análise , Fitoplâncton/metabolismo , Cromatografia Líquida , Dinoflagellida/ultraestrutura , Monitoramento Ambiental , Furanos/análise , Furanos/química , Furanos/metabolismo , Macrolídeos , Toxinas Marinhas/química , Espectrometria de Massas , Nigéria , Ácido Okadáico/análise , Ácido Okadáico/química , Ácido Okadáico/metabolismo , Fitoplâncton/ultraestrutura , Piranos/análise , Piranos/química , Piranos/metabolismo
12.
J Chromatogr A ; 1416: 10-21, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26363951

RESUMO

Measurement of marine algal toxins has traditionally focussed on shellfish monitoring while, over the last decade, passive sampling has been introduced as a complementary tool for exploratory studies. Since 2011, liquid chromatography-tandem mass spectrometry (LC-MS/MS) has been adopted as the EU reference method (No. 15/2011) for detection and quantitation of lipophilic toxins. Traditional LC-MS approaches have been based on low-resolution mass spectrometry (LRMS), however, advances in instrument platforms have led to a heightened interest in the use of high-resolution mass spectrometry (HRMS) for toxin detection. This work describes the use of HRMS in combination with passive sampling as a progressive approach to marine algal toxin surveys. Experiments focused on comparison of LRMS and HRMS for determination of a broad range of toxins in shellfish and passive samplers. Matrix effects are an important issue to address in LC-MS; therefore, this phenomenon was evaluated for mussels (Mytilus galloprovincialis) and passive samplers using LRMS (triple quadrupole) and HRMS (quadrupole time-of-flight and Orbitrap) instruments. Matrix-matched calibration solutions containing okadaic acid and dinophysistoxins, pectenotoxin, azaspiracids, yessotoxins, domoic acid, pinnatoxins, gymnodimine A and 13-desmethyl spirolide C were prepared. Similar matrix effects were observed on all instruments types. Most notably, there was ion enhancement for pectenotoxins, okadaic acid/dinophysistoxins on one hand, and ion suppression for yessotoxins on the other. Interestingly, the ion selected for quantitation of PTX2 also influenced the magnitude of matrix effects, with the sodium adduct typically exhibiting less susceptibility to matrix effects than the ammonium adduct. As expected, mussel as a biological matrix, quantitatively produced significantly more matrix effects than passive sampler extracts, irrespective of toxin. Sample dilution was demonstrated as an effective measure to reduce matrix effects for all compounds, and was found to be particularly useful for the non-targeted approach. Limits of detection and method accuracy were comparable between the systems tested, demonstrating the applicability of HRMS as an effective tool for screening and quantitative analysis. HRMS offers the advantage of untargeted analysis, meaning that datasets can be retrospectively analyzed. HRMS (full scan) chromatograms of passive samplers yielded significantly less complex data sets than mussels, and were thus more easily screened for unknowns. Consequently, we recommend the use of HRMS in combination with passive sampling for studies investigating emerging or hitherto uncharacterized toxins.


Assuntos
Bivalves/química , Cromatografia Líquida/métodos , Toxinas Marinhas/análise , Frutos do Mar/análise , Espectrometria de Massas em Tandem/métodos , Animais , Padrões de Referência
13.
J Chromatogr A ; 1388: 87-101, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25731824

RESUMO

The presence of Ostreopsis cf. ovata on the Mediterranean coast represents a serious concern to human health due to production of toxins - putative palytoxin and ovatoxins (ovatoxin-a, -b, -c, -d, -e, -f and -g). However, purified ovatoxins are not widely available and their toxicities are still unknown. In the present study, we report on HR LC-MS/MS analysis of a French O. cf. ovata strain (IFR-OST-0.3V) collected at Villefranche-sur-Mer (France) during a bloom in 2011. Investigation of this strain of O. cf. ovata cultivated in our laboratory by ultra-high performance liquid chromatography coupled to high resolution mass spectrometry (UHPLC-HRMS) confirmed the production of ovatoxins-a to -e and revealed the presence of a new ovatoxin analog, named ovatoxin-h. O. cf. ovata extracts were pre-purified by Sephadex LH-20 to obtain a concentrated fraction of ovatoxins (OVTXs). This method provided a recovery of about 85% of OVTXs and a cleanup efficiency of 93%. Different stationary phases were tested with this fraction of interest to elucidate the structure of the new OVTX congener and to obtain purified ovatoxins. Eight reversed phase sorbents were evaluated for their capacity to separate and purify ovatoxins. Among them Kinetex C18, Kinetex PFP and Uptisphere C18-TF allowed for best separations almost achieving baseline resolution. Kinetex C18 is able to sufficiently separate these toxins, allowing us to identify the toxins present in the extract purified by Sephadex LH-20, and to partly elucidate the structure of the new ovatoxin congener. This toxin possesses one oxygen atom less and two hydrogens more than ovatoxin-a. Investigations using liquid chromatography coupled to high resolution tandem mass spectrometry suggest that the part of the molecule where ovatoxin-h differs from ovatoxin-a is situated between C42 and C49. Uptisphere C18-TF was proposed as a first step preparative chromatography as it is able to separate a higher number of ovatoxins (especially ovatoxin-d and ovatoxin-e) and because it separates ovatoxins from unknown compounds, identified using full scan single quadrupole mass spectrometry. After pre-purification with Sephadex LH-20, purification and separation of individual ovatoxins was attempted using an Uptisphere C18-TF column. During recovery of purified toxins, problems of stability of OVTXs were observed, leading us to investigate experimental conditions responsible for this degradation.


Assuntos
Extratos Celulares/química , Cromatografia Líquida de Alta Pressão/métodos , Dinoflagellida/química , Toxinas Marinhas/análise , Toxinas Marinhas/isolamento & purificação , Espectrometria de Massas em Tandem/métodos , França , Humanos , Toxinas Marinhas/química
14.
Neurotoxicology ; 44: 237-49, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25058900

RESUMO

Nonylphenols (NP) are endocrine-disruptors known to be widely present in our environment. This study evaluated the effects of 4-n-NP on neurobehavioral development and memory capacity after perinatal exposure on the offspring rats. Dams were gavaged with 4-n-NP (0, 50 and 200mg/kg/day) from gestational day 5 to postnatal day (PND) 21. Dams exposed to the higher dose lost weight during gestation and had a longer gestational duration. Juvenile female pups of the 200mg 4-n-NP/kg/day group were lighter. Their thyroid somatic index (TSI) was also affected. For male pups, a decrease of TSI at weaning for the 200mg 4-n-NP/kg/day group and an increase of GSI for the 50mg 4-n-NP/kg/day group were observed. Physical maturation (incisives and eyes) were likewise affected. In open field (OF) tests, females were more active than males. In the first OF (PND 36), a treatment effect was observed only for males, particularly for the high dose group, which became as active as females. The second OF (PND 71) showed few differences between groups (treated vs control), the gender difference whatever the dose was not abolished. In the Morris Water Maze test, the study of the first 30s showed that females (200mg/kg/day) were mainly affected. Their performances were improved by 4-n-NP. These effects were particularly important for the first short-term memory test and observed to a lesser extent in the second evaluation of the long-term memory (PND 69). These data showed that perinatal 4-n-NP exposure induced behavioral and neuro-developmental impairments from 50mg/kg/day.


Assuntos
Disruptores Endócrinos/toxicidade , Memória/efeitos dos fármacos , Atividade Motora/efeitos dos fármacos , Fenóis/toxicidade , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Animais , Peso Corporal/efeitos dos fármacos , Feminino , Idade Gestacional , Gônadas/efeitos dos fármacos , Fígado/efeitos dos fármacos , Masculino , Exposição Materna , Sistema Nervoso/efeitos dos fármacos , Sistema Nervoso/crescimento & desenvolvimento , Gravidez , Ratos , Ratos Sprague-Dawley , Fatores Sexuais , Glândula Tireoide/efeitos dos fármacos
15.
Mar Drugs ; 12(5): 2851-76, 2014 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-24828292

RESUMO

Ostreopsis cf. ovata produces palytoxin analogues including ovatoxins (OVTXs) and a putative palytoxin (p-PLTX), which can accumulate in marine organisms and may possibly lead to food intoxication. However, purified ovatoxins are not widely available and their toxicities are still unknown. The aim of this study was to improve understanding of the ecophysiology of Ostreopsis cf. ovata and its toxin production as well as to optimize the purification process for ovatoxin. During Ostreopsis blooms in 2011 and 2012 in Villefranche-sur-Mer (France, NW Mediterranean Sea), microalgae epiphytic cells and marine organisms were collected and analyzed both by LC-MS/MS and hemolysis assay. Results obtained with these two methods were comparable, suggesting ovatoxins have hemolytic properties. An average of 223 µg·kg-1 of palytoxin equivalent of whole flesh was found, thus exceeding the threshold of 30 µg·kg-1 in shellfish recommended by the European Food Safety Authority (EFSA). Ostreopsis cells showed the same toxin profile both in situ and in laboratory culture, with ovatoxin-a (OVTX-a) being the most abundant analogue (~50%), followed by OVTX-b (~15%), p-PLTX (12%), OVTX-d (8%), OVTX-c (5%) and OVTX-e (4%). Ostreopsis cf. ovata produced up to 2 g of biomass per L of culture, with a maximum concentration of 300 pg PLTX equivalent cell-1. Thus, an approximate amount of 10 mg of PLTX-group toxins may be produced with 10 L of this strain. Toxin extracts obtained from collected biomass were purified using different techniques such as liquid-liquid partition or size exclusion. Among these methods, open-column chromatography with Sephadex LH20 phase yielded the best results with a cleanup efficiency of 93% and recovery of about 85%, representing an increase of toxin percentage by 13 fold. Hence, this purification step should be incorporated into future isolation exercises.


Assuntos
Dinoflagellida/química , Toxinas Marinhas/isolamento & purificação , Alimentos Marinhos/análise , Acrilamidas , Animais , Antozoários/microbiologia , Venenos de Cnidários , Dinoflagellida/classificação , Dinoflagellida/genética , França , Hemólise/efeitos dos fármacos , Técnicas In Vitro , Toxinas Marinhas/química , Mar Mediterrâneo , Água do Mar/química , Água do Mar/microbiologia , Ovinos
16.
Toxicon ; 91: 57-68, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24709758

RESUMO

Marine biotoxins are algal metabolites that can accumulate in fish or shellfish and render these foodstuffs unfit for human consumption. These toxins, released into seawater during algal occurrences, can be monitored through passive sampling. Acetone, methanol and isopropanol were evaluated for their efficiency in extracting toxins from algal biomass. Isopropanol was chosen for further experiments thanks to a slightly higher recovery and no artifact formation. Comparison of Oasis HLB, Strata-X, BondElut C18 and HP-20 sorbent materials in SPE-mode led to the choice of Oasis HLB, HP-20 and Strata-X. These three sorbents were separately exposed as passive samplers for 24 h to seawater spiked with algal extracts containing known amounts of okadaic acid (OA), azaspiracids (AZAs), pinnatoxin-G (PnTX-G), 13-desmethyl spirolide-C (SPX1) and palytoxins (PlTXs). Low density polyethylene (LDPE) and silicone rubber (PDMS) strips were tested in parallel on similar mixtures of spiked natural seawater for 24 h. These strips gave significantly lower recoveries than the polymeric sorbents. Irrespective of the toxin group, the adsorption rate of toxins on HP-20 was slower than on Oasis HLB and Strata-X. However, HP-20 and Strata-X gave somewhat higher recoveries after 24 h exposure. Irrespective of the sorbent tested, recoveries were generally highest for cyclic imines and OA group toxins, slightly lower for AZAs, and the lowest for palytoxins. Trials in re-circulated closed tanks with mussels exposed to Vulcanodinium rugosum or Prorocentrum lima allowed for further evaluation of passive samplers. In these experiments with different sorbent materials competing for toxins in the same container, Strata-X accumulated toxins faster than Oasis HLB, and HP-20, and to higher levels. The deployment of these three sorbents at Ingril French Mediterranean lagoon to detect PnTX-G in the water column showed accumulation of higher levels on HP-20 and Oasis HLB compared to Strata-X. This study has significantly extended the range of sorbents for passive sampling of marine toxins. In particular, sorbents were included that had previously been evaluated for polyhalogenated contaminants, pharmaceuticals, phytochemicals or veterinary residues. Moreover, this study has for the first time demonstrated the usefulness of the polymeric Oasis HLB and Strata-X sorbents in laboratory and field studies for various microalgal toxins.


Assuntos
Lipídeos/química , Toxinas Marinhas/análise , Polímeros/química , Toxinas Marinhas/química
17.
Toxicon ; 65: 81-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23396041

RESUMO

The relationship between azaspiracid shellfish poisoning and a small dinoflagellate, Azadinium spinosum, has been shown recently. The organism produces AZA1 and -2, while AZA3 and other analogues are metabolic products formed in shellfish. We evaluated whether mussels were capable of accumulating dissolved AZA1 and -2, and compared the toxin profiles of these mussels at 24 h with profiles of those exposed to live or lysed A. spinosum. We also assessed the possibility of preparative production of AZA metabolites by exposing mussels to semi-purified AZA1. We exposed mussels to similar concentration of AZAs: dissolved AZA1 + 2 (crude extract) at 7.5 and 0.75 µg L(-1), dissolved AZA1+2 (7.5 µg L(-1)) in combination with Isochrysis affinis galbana, and lysed and live A. spinosum cells at 1 × 10(5) and 1 × 10(4) cell mL(-1) (containing equivalent amounts of AZA1 + 2). Subsequently, we dissected and analysed digestive glands, gills and remaining flesh. Mussels (whole flesh) accumulated AZAs to levels above the regulatory limit, except at the lower levels of dissolved AZAs. The toxin profile of the mussels varied significantly with treatment. The gills contained 42-46% and the digestive glands 23-24% of the total toxin load using dissolved AZAs, compared to 3-12% and 75-90%, respectively, in mussels exposed to live A. spinosum. Exposure of mussels to semi-purified AZA1 produced the metabolites AZA17 (16.5%) and AZA3 (1.7%) after 4 days of exposure, but the conversion efficiency was too low to justify using this procedure for preparative isolation.


Assuntos
Dinoflagellida/metabolismo , Toxinas Marinhas/metabolismo , Mytilus edulis/metabolismo , Compostos de Espiro/metabolismo , Animais , Cromatografia Líquida de Alta Pressão , Dinoflagellida/química , Trato Gastrointestinal/metabolismo , Brânquias/metabolismo , Toxinas Marinhas/química , Compostos de Espiro/química , Espectrometria de Massas em Tandem
18.
Aquat Toxicol ; 124-125: 179-87, 2012 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-22982497

RESUMO

Azadinium spinosum, a small toxic dinoflagellate, was recently isolated and identified as a primary producer of azaspiracid toxins (AZAs). Previous experiments related to AZA accumulation in blue mussels upon direct feeding with A. spinosum revealed increased mussel mortality and had negative effects on the thickness of the digestive gland tubules. Therefore we conducted follow up experiments in order to study effects of A. spinosum on mussel feeding behaviour. Individual assessment of mussel feeding time activity (FTA), clearance rate (CR), filtration rate (TFR), absorption rate (AR), faeces and pseudofaeces production were carried out on mussel fed either toxic (A. spinosum) or non-toxic (Isochrisis aff. galbana (T-Iso)) diets. Furthermore, AZA accumulation and biotransformation in mussels were followed using liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS). A. spinosum had a significant effect on mussel feeding behaviour compared to T-Iso: CR was lower by a factor of 6, FTA by a factor of 5, TFR by a factor of 3 and AR even decreased to negative values for the last day of exposure. Even so, a rapid AZA accumulation was observed during the first hours of the trial; less than 6h of feeding were required to reach AZA concentration in mussel above regulatory level. In consistence with physiological observations, AZA concentration of about 200 µg kg(-1) did not increase further until the end of the study. AZA bioconversion was also found to be a fast process: after 3h of exposure AZA17, -19 and AZA7-10 were already found, with a proportion of AZA17 equal to AZA2. These results show a negative effect of A. spinosum on blue mussel feeding activity and indicate a possible regulation of AZA uptake by decreasing filtration and increasing pseudofaeces production.


Assuntos
Dinoflagellida/química , Comportamento Alimentar/efeitos dos fármacos , Toxinas Marinhas/toxicidade , Mytilus edulis/efeitos dos fármacos , Mytilus edulis/metabolismo , Compostos de Espiro/toxicidade , Animais , Biotransformação , Taxa de Depuração Metabólica/efeitos dos fármacos , Mytilus edulis/química , Venenos/toxicidade
19.
Mar Drugs ; 10(6): 1360-1382, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22822378

RESUMO

Azaspiracid (AZA) poisoning has been reported following consumption of contaminated shellfish, and is of human health concern. Hence, it is important to have sustainable amounts of the causative toxins available for toxicological studies and for instrument calibration in monitoring programs, without having to rely on natural toxin events. Continuous pilot scale culturing was carried out to evaluate the feasibility of AZA production using Azadinium spinosum cultures. Algae were harvested using tangential flow filtration or continuous centrifugation. AZAs were extracted using solid phase extraction (SPE) procedures, and subsequently purified. When coupling two stirred photobioreactors in series, cell concentrations reached 190,000 and 210,000 cell · mL(-1) at steady state in bioreactors 1 and 2, respectively. The AZA cell quota decreased as the dilution rate increased from 0.15 to 0.3 day(-1), with optimum toxin production at 0.25 day(-1). After optimization, SPE procedures allowed for the recovery of 79 ± 9% of AZAs. The preparative isolation procedure previously developed for shellfish was optimized for algal extracts, such that only four steps were necessary to obtain purified AZA1 and -2. A purification efficiency of more than 70% was achieved, and isolation from 1200 L of culture yielded 9.3 mg of AZA1 and 2.2 mg of AZA2 of >95% purity. This work demonstrated the feasibility of sustainably producing AZA1 and -2 from A. spinosum cultures.


Assuntos
Técnicas de Cultura de Células/métodos , Dinoflagellida/química , Toxinas Marinhas/isolamento & purificação , Compostos de Espiro/isolamento & purificação , Toxinas Biológicas/isolamento & purificação , Dinoflagellida/crescimento & desenvolvimento , Dinoflagellida/metabolismo , Toxinas Marinhas/biossíntese , Fotobiorreatores , Extração em Fase Sólida/métodos , Toxinas Biológicas/biossíntese
20.
Toxicon ; 60(4): 582-95, 2012 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-22575282

RESUMO

Azadinium spinosum (Elbrächter and Tillmann), a small marine dinoflagellate, has been recently described as a de novo producer of azaspiracid-1 and -2 (AZA1 and -2) diarrhoeic toxins. A culture of A. spinosum was established in our laboratory and optimised for pilot-scale production of this organism, to evaluate and understand AZA1 and -2 accumulation and biotransformation in blue mussels (Mytilus edulis) fed with A. spinosum. Adult mussels were continuously exposed to A. spinosum over 1 week in 160 L cylindrical conical tanks. Three different diets were tested for contamination: 5000, 10 000 cells mL(-1) of A. spinosum and a mixture of 5000 cells mL(-1) of A. spinosum with 5000 cells mL(-1) of Isochrysis aff. galbana (T-Iso, CCAP 927/14). During the subsequent period of detoxification (2 weeks), contaminated mussels were continuously fed with 5000 cells mL(-1) of T-Iso. Kinetics of accumulation, detoxification and biotransformation were evaluated, as well as the toxin distribution and the effect of A. spinosum on mussel digestive gland tubules. M. edulis fed on A. spinosum in the three tested conditions; this finding confirmed our recent experiments feeding A. spinosum to mussels. The original algal toxins AZA1 and -2, as well as mussel metabolites AZA3 to 12, -17, -19, -21 and -23 were found during these trials. After as little as 6 h, azaspiracid contents in mussels reached the EU regulatory limit, and metabolites were observed in all conditions at approximately 25% of the total AZA content. This fraction exceeded 50% after 24 h, and continued to increase until the end of the study. AZA17 and -19 were found to be the main metabolites, with AZA17 concentrations estimated in the same order of magnitude as that of the main algal toxin, AZA1.


Assuntos
Dinoflagellida/metabolismo , Toxinas Marinhas/farmacocinética , Mytilus edulis/metabolismo , Intoxicação por Frutos do Mar/metabolismo , Compostos de Espiro/farmacocinética , Animais , Biotransformação , Cromatografia Líquida de Alta Pressão , Modelos Animais de Doenças , Contaminação de Alimentos , Interações Hospedeiro-Parasita , Inativação Metabólica , Toxinas Marinhas/química , Toxinas Marinhas/toxicidade , Mytilus edulis/parasitologia , Compostos de Espiro/química , Compostos de Espiro/toxicidade , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...